سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Deep learning in healthcare

سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 306

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

COMCONF09_039

تاریخ نمایه سازی: 14 آذر 1401

چکیده مقاله Deep learning in healthcare

Understanding and using complex, high-dimensional, and heterogeneous biological data remains a major obstacle in healthcare transformation. Electronic health records, imaging, -omics, sensor data, and text, all of which are complicated, diverse, poorly annotated, and typically unstructured, have all been growing in contemporary biomedical research. Before building prediction or clustering models on top of the features, traditional data mining and statistical learning techniques frequently need feature engineering to extract useful and more robust features from the data. In the case of complex data and insufficient domain expertise, both phases have several problems. The most recent deep learning technology advancements provide new efficient paradigms for creating end-to-end learning models from complex data. This post examines the most recent research on using deep learning techniques to benefit the healthcare industry. We propose that deep learning technologies could be the means of converting large-scale biomedical data into better human health based on the reviewed studies. We also draw attention to several drawbacks and the need for better technique development and implementation, particularly in terms of simplicity of comprehension for subject matter experts and citizen scientists. To connect deep learning models with human interpretability, we examine these problems and recommend creating comprehensive and meaningful interpretable architectures.

کلیدواژه های Deep learning in healthcare:

نویسندگان مقاله Deep learning in healthcare

Farzane Tajidini

Tabarestan University of Chalus, Chalus, Iran

Raziye Mehri

Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran ۳ Department of Community Medicine, Faculty of Medicine, Ardabil University of Medical Science, Ardabil, Iran

مقاله فارسی "Deep learning in healthcare" توسط Farzane Tajidini، Tabarestan University of Chalus, Chalus, Iran؛ Raziye Mehri، Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran ۳ Department of Community Medicine, Faculty of Medicine, Ardabil University of Medical Science, Ardabil, Iran نوشته شده و در سال 1401 پس از تایید کمیته علمی نهمین کنگره ملی تازه های مهندسی برق و کامپیوتر ایران پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله _ Deep learning, Healthcare, Health Records هستند. این مقاله در تاریخ 14 آذر 1401 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 306 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که Understanding and using complex, high-dimensional, and heterogeneous biological data remains a major obstacle in healthcare transformation. Electronic health records, imaging, -omics, sensor data, and text, all of which are complicated, diverse, poorly annotated, and typically unstructured, have all been growing in contemporary biomedical research. Before building prediction or clustering models on top of the features, traditional data mining and statistical ... . این مقاله در دسته بندی موضوعی یادگیری عمیق طبقه بندی شده است. برای دانلود فایل کامل مقاله Deep learning in healthcare با 10 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.